Множества
Что такое множество в математике? Математическое множество - это несколько отдельных элементов, рассматриваемых, как единое целое. Если обозначить такой элемент буквой a, а само множество — буквой А, то запись будет выглядеть следующим образом:
a ∈ A.
проговаривается эта запись так: a принадлежит А, или А содержит а, или а — элемент А.
Для перечисления элементов множества используются фигурные скобки — {}. То есть, например, множество, в котором а ∈ А, b ∈ A и c ∈ A, будет записываться в таком виде:
{a, b, c}.
Виды множеств.
Пустые множества.
Пустое множество – это то множество, которое вообще не содержит никаких элементов. Обозначается оно цифрой 0 или специальным значком ∅.
Примером пустого множества может служить любое нелогичное понятие, противоречащее самому себе — «множество птиц, живущих на дне океана», или «множество деревьев на Луне». Поскольку оба множества лишены смысла и не отвечают реальности, то, следовательно, они являются пустыми. Скажем, количество деревьев на Луне – 0, поэтому «множество деревьев на Луне» будет пустым (не будет содержать ни одного элемента).
Равные множества.
Равные множества – это два или более множеств, состоящих из равных наборов элементов. Приведём пример. Скажем, все члены Вашей семьи находятся на кухне. Таким образом, Множество «Члены семьи на кухне» будет равно множеству «Члены семьи в квартире».
Если два множества — А и B — состоят из одинакового набора элементов, то они будут равны, то есть А = B. Элементы множеств могут перечисляться в любой последовательности, на результат это никак не влияет. Множество {a, b, c} можно с тем же успехом записать, как {a, c, b}, или {с, b, a}, или {b, c, a}.
Подмножества и надмножества.
Если множества А и B состоят из одинаковых элементов {a, b, c}, то А будет считаться подмножеством B, а B — надмножеством А. Записывается это следующим образом:
A ⊆ B, B ⊇ A.
Бывает так, что множество В содержит в себе каждый из элементов множества А, но в то же время в нем присутствуют и другие элементы, множеству А не принадлежащие. В этом случае множество В становится собственным надмножеством А, в то время как множество А становится собственным подмножеством В.
Иначе говоря, если А ⊆ В, но при этом А ≠ В, то А ⊂ В, В ⊃ А.