Что такое синус?
Тригонометрия является разделом математики, изучающим тригонометрические функции, а также их использование на практике. К таким функциям относятся синус, косинус, тангенс и котангенс.
Синус – это тригонометрическая функция, отношение величины противолежащего катета к величине гипотенузы.
Синус в тригонометрии.
Как уже сказано выше, синус имеет непосредственное отношение к тригонометрии и тригонометрическим функциям. Его функция определяется тем, чтобы
- помогать высчитать угол, при условии известности величин сторон треугольника;
- помогать высчитать величины стороны треугольника, при условии известности угла.
Необходимо помнить, что величина синуса будет всегда одинакова для любых размеров треугольника, поскольку синус – это не измерение, а соотношение.
Следовательно, для того чтобы не высчитывать эту постоянную величину при каждом решении той или иной задачи, были созданы специальные тригонометрические таблицы. В них величины синусов, косинусов, тангенсов и котангенсов уже просчитаны и закреплены. Обычно эти таблицы приводятся на форзаце учебников по алгебре и геометрии. Также их можно найти в Интернете.
Синус в геометрии.
Геометрия требует наглядности, поэтому, чтобы понять на практике, что такое синус угла, нужно нарисовать треугольник с прямым углом.
Допустим, что стороны, образующие прямой угол, названы а, в, противоположный им угол – х.
Обычно в заданиях указана длина сторон. Допустим, а=3, в=4. В таком случае соотношение сторон будет выглядеть как ¾. При этом если удлинить стороны треугольника, прилегающие к острому углу х, то увеличатся и стороны а и в, и гипотенуза – третья сторона прямоугольного треугольника, лежащая не под прямым углом к основанию. Теперь стороны треугольника можно назвать иначе, допустим: m, n, k.
При этом видоизменении сработал закон тригонометрии: длины сторон треугольника изменились, а их отношение – нет.
Тот факт, что при изменении длины сторон треугольника во сколько угодно раз и при сохранении величины угла х, соотношение между его сторонами всё равно останется неизменным, заметили ещё древние ученые. В нашем случае длина сторон могла измениться так: а/в = ¾, при удлинении стороны а до 6 см, а в – до 8 см получаем: m/n = 6/8 = 3/4.
Соотношения сторон в прямоугольном треугольнике в связи с этим получили названия:
- синус угла х – это отношение противолежащего катета к гипотенузе: sinx = а/с;
- косинус угла х – это отношение прилежащего катета к гипотенузе: сosx = в/с;
- тангенс угла х – это отношение противолежащего катета к прилежащему: tgx = а/в;
- котангенс угла х – это отношение прилежащего катета к противолежащему: ctgx = в/а.